Object Oriented Programming Using C++

Lecture Notes
1. Introduction

Before starting with OOP topic, there are some important subject in c++ that need to be illustrated. These subjects concerning revision of Data-Types, string and its library, static variables, functions and data structures (struct data type) in addition to pointers.
1.1 Identifiers

A valid identifier is a sequence of one or more letters, digits or underline symbols (_). The length of an identifier is not limited, although for some compilers only the 32 first characters of an identifier are significant (the rest are not considered). Variable identifiers should:
· always begin with a letter or with an underline character (_), but underline character is usually reserved for external links

· they cannot match any key word of the C++ language nor your compiler's specific ones since they could be confused with these.
· The C++ language is "case sensitive", that means that an identifier written in capital letters is not equivalent to another one with the same name but written in small letters. Thus, for example the variable RESULT is not the same as the variable result nor the variable Result.

1.2 Data Types

When programming, the variables stored in computer's memory, but the computer must know what to be stored in them since storing a simple number, a letter or a large number is not going to occupy the same space in memory. Data type could be char, int, float, double, long, unsigned.
Programmer could also create synonyms or aliases to previously defined data type by using typedef statement. The general format of typedef is:

Example

typedef int integer; // this means the new name of the type int is integer

typedef float float_ary[10];

void main()

{ integer x; // in this case the type of x is int

 float_ary A; // now A is an array of 10 float cells

 :

 }

1.3 Strings of Characters.

In C++ there is no specific elemental variable type to store strings of characters. In order to fulfill this feature, use arrays of type char, which are successions of char elements. Remember that this data type (char) is the one used to store a single character, for that reason arrays of them are generally used to make strings of single characters. For example, the following array (or string of characters):

 char jenny [20]; // jenny array can store a string up to 20 characters long.

This maximum size of 20 characters is not required to always be fully used. For example, jenny could store at some moment in a program either the string of characters "Hello" or the string "How are you". Therefore, a convention has been reached to end the valid content of a string with a null character, whose constant can be written 0 or '\0'.

We could represent jenny (an array of 20 elements of type char) storing the strings of characters "Hello" and "HOW ARE YOU" in the following way:
[image: image1.png]\o

	H
	O
	W
	
	A
	R
	E
	
	Y
	O
	U
	\0
	
	
	
	
	
	
	
	

Notice how after the valid content a null character ('\0') it is included in order to indicate the end of the string. The panels in gray color represent indeterminate values.

1.3.1 Initialization of strings

Because strings of characters are ordinary arrays they fulfill all their same rules. For example, if to initialize a string of characters with predetermined values, do it just like any other array:

char mystring[] = { 'H', 'e', 'l', 'l', 'o', '\0' };
In this case we would have declared a string of characters (array) of 6 elements of type char initialized with the characters that compose Hello plus a null character '\0'. Nevertheless, strings of characters have an additional way to initialize their values: using constant strings using (").Strings enclosed between double quotes always have a null character ('\0') automatically appended at the end. Therefore we could initialize the string mystring with values by either of these two ways:

char mystring [] = { 'H', 'e', 'l', 'l', 'o', '\0' };

or
char mystring [] = "Hello";

Before going further, notice that the assignation of multiple constants like double-quoted constants (") to arrays are only valid when initializing the array, that is, at the moment when declared. Expressions within the code like:

mystring = "Hello";
mystring[] = "Hello";
are not valid for arrays, like neither would be:

mystring = { 'H', 'e', 'l', 'l', 'o', '\0' };
So remember: We can "assign" a multiple constant to an Array only at the moment of initializing it. The reason will be more comprehensible when you know a bit more about pointers, since then it will be clarified that an array is simply a constant pointer pointing to an allocated block of memory. For that, the array itself can not be assigned any value, but we can assign values to each of the array elements.

1.3.2 Assigning Values to Strings

Since the lvalue of an assignation can only be an element of an array and not the entire array, it would be valid to assign a string of characters to an array of char using a method like this:

mystring[0] = 'H'; mystring[1] = 'e'; mystring[2] = 'l'; mystring[3] = 'l'; mystring[4] = 'o';
mystring[5] = '\0';
But this is not a very practical method. A series of functions like strcpy are used. strcpy (string copy) is defined in the cstring (string.h) library and can be called the following way:

strcpy (string1, string2);
This does copy the content of string2 into string1. string2 can be either an array, a pointer, or a constant string, so the following line would be a valid way to assign the constant string "Hello" to mystring:

strcpy (mystring, "Hello");
For example:

	// setting value to string
#include <iostream.h>

#include <string.h>

void main ()

{ char szMyName [20];

 strcpy (szMyName,"Testing");

 cout << szMyName;}
	Testing

Notice that we need to include <string.h> header in order to be able to use function strcpy. Although we can always write a simple function like the following setstring with the same operation as strcpy:

	// setting value to string
#include <iostream.h>

void setstring (char szOut [], char szIn [])

{ int n=0;

 do {

 szOut[n] = szIn[n];

 } while (szIn[n++] != '\0'); }

void main ()

{ char szMyName [20];

 setstring (szMyName," Testing ");

 cout << szMyName;}
	Testing

1.3.3 How to Read a String

Another frequently used method to assign values to an array is by directly using the input stream (cin). When cin is used with strings of characters it is usually used with its getline method:

cin.getline (char buffer[], int length, char delimiter = ' \n');
where buffer is the address of where to store the input (like an array, for example), length is the maximum length of the buffer (size of the array) and delimiter is the character used to determine the end of the user input, which by default - will be the newline character ('\n'). As an example of how you can use cin.getline with strings:

	// cin with strings
#include <iostream.h>

void main ()

{ char mybuffer [100];

 cout << "What's your name? ";

 cin.getline (mybuffer,100);

 cout << "Hello " << mybuffer << ".\n";

 cout << "Which is your favourite team? ";

 cin.getline (mybuffer,100);

 cout << "I like " << mybuffer << " too.\n";}
	What's your name? Juan
Hello Juan.
Which is your favourite team? Inter Milan
I like Inter Milan too.

cin >> mybuffer;
This method can also be used instead of cin.getline with strings of characters. This would work, but this method has the following limitations that cin.getline has not:

· It can only receive single words (no complete sentences).

· It is not allowed to specify a size for the buffer. That makes your program unstable in case the user input is longer than the array that will host it.

For these reasons it is recommended that whenever you require strings of characters coming from cin you use cin.getline instead of cin >>.

1.3.4 Converting strings to other types

Due to that a string may contain representations of other data types like numbers; it might be useful to translate that content to a variable of a numeric type. For example, a string may contain "1977", but this is a sequence of 5 chars not so easily convertible to a single integer data type. The cstdlib (stdlib.h) library provides three useful functions for this purpose:

· atoi: converts string to int type.

· atol: converts string to long type.

· atof: converts string to float type.

All of these functions admit one parameter and return a value of the requested type (int, long or float). These functions combined with getline method of cin are a more reliable way to get the user input.

	// cin and ato* functions
#include <iostream.h>

#include <stdlib.h>

void main ()

{ char mybuffer [100];

 float price;

 int quantity;

 cout << "Enter price: ";

 cin.getline (mybuffer,100);

 price = atof (mybuffer);

 cout << "Enter quantity: ";

 cin.getline (mybuffer,100);

 quantity = atoi (mybuffer);

 cout << "Total price: " << price*quantity;}
	Enter price: 2.75
Enter quantity: 21
Total price: 57.75

1.3.5 Functions to Manipulate Strings

The cstring library (string.h) defines many functions to perform manipulation operations with C-like strings (like already explained strcpy). Here you have a brief look at the most usual:

strcat: char* strcat (char* dest, const char* src);
 Appends src string at the end of dest string. Returns dest.

strcmp: int strcmp (const char* string1, const char* string2);

Compares strings string1 and string2. Returns 0 is both strings are equal.

strcpy: char* strcpy (char* dest, const char* src); //Copies the content of src to dest. Returns dest.

strlen: size_t strlen (const char* string); // Returns the length of string.

NOTE: char* is the same as char[]
Check the http://www.cplusplus.com/reference/string/ for extended information about these and other functions of this library.

1.4 Functions

Programs could be structured in a more modular way using functions. A function is a block of instructions that is executed when it is called from some other point of the program. The general format of a function:

where:

 type is the type of data returned by the function.

 name is the name by which it will be possible to call the function.

 arguments (as many as wanted can be specified). Each argument consists of a type of data followed by its identifier, like in a variable declaration (for example, int x) and which acts within the function like any other variable. They allow passing parameters to the function when it is called. The different parameters are separated by commas.

 statement is the function's body. It can be a single instruction or a block of instructions. In the latter case it must be delimited by curly brackets {}.

Here you have the first function example:

	// function example
#include <iostream.h>
int addition (int a, int b)

{ int r;

 r=a+b;

 return (r); }

int main ()

{ int z;

 z = addition (5,3);

 cout << "The result is " << z;

 return 0;}
	The result is 8

a C++ program always begins its execution with the main function. The main function begins by declaring the variable z of type int. Right after that we see a call to addition function. See the similarity between the structure of the call to the function and the declaration of the function itself in the code lines above: (the most important thing is that the function name should match, number and type of parameters when calling the function should match)

[image: image2.png]int addition (int a, int b)

ot

z = addition (5 , 3

 // the call of the function

The parameters have a clear correspondence. Within the main function, calling addition function and passing two values: 5 and 3 that correspond to the int a and int b parameters declared for the function addition.

At the moment at which the function is called from main, control is lost by main and passed to the function addition. The value of both parameters passed in the call (5 and 3) are copied to the local variables int a and int b within the function. Function addition declares a new variable (int r;), and by means of the expression r=a+b;, it assigns to r the result of adding a to b, the result is 8.

The following line of code: return (r);
returns the control back to the function that called it (main) following the program from the same point at which it was interrupted by the call to addition. But additionally, return was called with the content of variable r (return (r);), which at that moment was 8, so this value is said to be returned by the function.

[image: image3.png]int addition (int a, int b)
18

z = addition (5 , 3);

The value returned by a function is the value given to the function when it is evaluated. Therefore, z will store the value returned by addition (5, 3), that is 8. Another example about functions is:

	// function example
#include <iostream.h>

int subtraction (int a, int b)

{ int r;

 r=a-b;

 return (r);}

int main ()

{ int x=5, y=3, z;

 z = subtraction (7,2);

 cout << "The first result is " << z << '\n';

 cout << "The second result is " << subtraction (7,2) << '\n';

 cout << "The third result is " << subtraction (x,y) << '\n';

 z= 4 + subtraction (x,y);

 cout << "The fourth result is " << z << '\n';

 return 0; }
	The first result is 5
The second result is 5
The third result is 2
The fourth result is 6

Function subtraction subtract both passed parameters and to return the result. Function main made several calls to function subtraction using different calling methods. For example:

z = subtraction (7,2);
cout << "The first result is " << z; //z = 5;
As well as

cout << "The second result is " << subtraction (7,2);
has the same result as the previous call, but in this case we made the call to subtraction directly as a parameter for cout.

In the case of: cout << "The third result is " << subtraction (x,y);
The only new thing that we introduced is that the parameters of subtraction are variables instead of constants. That is perfectly valid. In this case the values passed to the function subtraction are the values of x and y, that are 5 and 3 respectively, giving 2 as result.

The fourth case is more of the same. Simply note that instead of:

z = 4 + subtraction (x,y);
cout << "The first result is " << z;
1.4.1 Functions with No Types (The use of void)
The syntax of a function declaration (as shown previously):

type name (argument1, argument2 ...) statement
If we want to return no value from function, for example, make a function just to show a message on the screen. Also sometimes we do not need to receive any parameters. For these cases, the void type was devised in the C language.

	// void function example
#include <iostream.h>

void dummyfunction (void)

{cout << "I'm a function!"; }

int main ()

{ dummyfunction ();

 return 0;}
	I'm a function!

Although in C++ it is not necessary to specify void, its use is considered suitable to signify that it is a function without parameters or arguments and not something else.

1.4.2 Arguments Passed by Value and by Reference

Until now, in all the seen functions, the parameters passed to the functions have been passed by value. This means that when calling a function with parameters, what have been passed to the function were values but never the specified variables themselves. For example, suppose that we called the first function addition using the following code:

int x=5, y=3, z;
z = addition (x , y);
What has been done in this case was to call function addition with passing the values of x and y, that means 5 and 3 respectively, not the variables themselves.

[image: image4.png]int addition (int a, int b)
1s 1
.oy)

z = addition (x

This way, when function addition is being called the value of its variables a and b become 5 and 3 respectively, but any modification of a or b within the function addition will not affect the values of x and y outside it, because variables x and y were not passed themselves to the function, only their values. But there might be some cases where you need to manipulate from inside a function the value of an external variable. For that purpose, arguments passed by reference is needed, as in the function duplicate of the following example:

	// passing parameters by reference
#include <iostream.h>

void duplicate (int& a, int& b, int& c)

{ a*=2; b*=2; c*=2; }

int main ()

{ int x=1, y=3, z=7;

 duplicate (x, y, z);

 cout << "x=" << x << ", y=" << y << ", z=" << z;

 return 0;}
	x=2, y=6, z=14

The first thing that should call your attention is that in the declaration of duplicate the type of each argument was followed by an ampersand sign (&), that serves to specify that the variable has to be passed by reference instead of by value, as usual.

When passing a variable by reference we are passing the variable itself and any modification that we do to that parameter within the function will have effect in the passed variable outside it.

[image: image5.png]void duplicate (int& a,int& b,int& c)

FokoE

duplicate (x ., y ., z);

To express it another way, we have associated a, b and c with the parameters used when calling the function (x, y and z) and any change that we do on a within the function will affect the value of x outside. Any change that we do on b will affect y, and the same with c and z.

That is why our program's output, that shows the values stored in x, y and z after the call to duplicate, shows the values of the three variables of main doubled.

If when declaring the following function:

void duplicate (int& a, int& b, int& c)
we had declared it thus:

void duplicate (int a, int b, int c)
that is, without the ampersand (&) signs, we would have not passed the variables by reference, but their values, and therefore, the output on screen for our program would have been the values of x, y and z without having been modified.
Passing by reference is an effective way to allow a function to return more than one single value. For example, here is a function that returns the previous and next numbers of the first parameter passed.

	// more than one returning value
#include <iostream.h>

void prevnext (int x, int& prev, int& next)

{ prev = x-1;

 next = x+1; }

int main ()

{ int x=100, y, z;

 prevnext (x, y, z);

 cout << "Previous=" << y << ", Next=" << z;

 Return 0;}
	Previous=99, Next=101

1.4.2 Prototyping functions.

 If you try to repeat some of the examples of functions described so far, but placing the function main before any other function that is called from within it, an error will most likely obtained. The reason is that to be able to call a function it must have been declared previously (it must be known), like we have done in all our examples. But there is an alternative way to avoid writing all the code of all functions before they can be used in main or in another function. It is by prototyping functions. This consists in making a previous shorter, but quite significant, declaration of the complete definition so that the compiler can know the arguments and the return type needed. Its form is:

type name (argument_type1, argument_type2, ...);
It is identical to the header of a function definition, except:

· It does not include a statement for the function. That means that it does not include the body with all the instructions that are usually enclose within curly brackets { }.

· It ends with a semicolon sign (;).

· In the argument enumeration it is enough to put the type of each argument. The inclusion of a name for each argument as in the definition of a standard function is optional, although recommended.

For example:

	// prototyping
#include <iostream.h>

void odd (int a);

void even (int a);

int main ()

{ int i;

 do {

 cout << "Type a number: (0 to exit)";

 cin >> i;

 odd (i);

 } while (i!=0);

 return 0;}

void odd (int a)

{ if ((a%2)!=0) cout << "Number is odd.\n";

 else even (a);}

void even (int a)

{ if ((a%2)==0) cout << "Number is even.\n";

 else odd (a);}
	Type a number (0 to exit): 9
Number is odd.
Type a number (0 to exit): 6
Number is even.
Type a number (0 to exit): 1030
Number is even.
Type a number (0 to exit): 0
Number is even.

Nevertheless, the specific reason why this program needs at least one of the functions prototyped is because in odd there is a call to even and in even there is a call to odd. If none of the two functions had been previously declared, an error would have happened, since either odd would not be visible from even (because it has not still been declared), or even would not be visible from odd. Many programmers recommend that all functions be prototyped. Having the prototype of all the functions in the same place can spare us some time when determining how to call it or even ease the creation of a header file.

1.4.3 Default Values in Arguments
When declaring a function we can specify a default value for each parameter. This value will be used if that parameter is left blank when calling to the function. To do that we simply have to assign a value to the arguments in the function declaration. If a value for that parameter is not passed when the function is called, the default value is used, but if a value is specified this default value is stepped on and the passed value is used. For example:
	// default values in functions
#include <iostream.h>

int divide (int a, int b=2)

{ int r;

 r=a/b;

 return (r);}

int main ()

{ cout << divide (12);

 cout << endl;

 cout << divide (20,4);

 return 0;}
	6
5

As we can see in the body of the program there are two calls to the function divide.
In the first one: divide (12)

we have only specified one argument, but the function divide allows up to two. So the function divide has assumed that the second parameter is 2 since that is what we have specified to happen if this parameter is lacking (notice the function declaration, which finishes with int b=2). Therefore the result of this function call is 6 (12/2).

In the second call: divide (20,4)
there are two parameters, so the default assignation (int b=2) is stepped on by the passed parameter, that is 4, making the result equal to 5 (20/4).

1.4.4 Overloaded Functions.

Two different functions can have the same name if the prototype of their arguments are different, that means that you can give the same name to more than one function if they have either a different number of arguments or different types in their arguments. For example,

	// overloaded function
#include <iostream.h>

int divide (int a, int b) { return (a/b);}
float divide (float a, float b) { return (a/b);}

int main ()

{ int x=5,y=2;

 float n=5.0,m=2.0;

 cout << divide (x,y);

 cout << "\n";

 cout << divide (n,m);

 cout << "\n";

 return 0;}
	2
2.5

In this case we have defined two functions with the same name, but one of them accepts two arguments of type int and the other accepts them of type float. The compiler knows which one to call in each case by examining the types when the function is called. If it is called with two ints as arguments it calls to the function that has two int arguments in the prototype and if it is called with two floats it will call to the one which has two floats in its prototype. For simplicity, both functions have the same code, but this is not compulsory. You can make two functions with the same name but with completely different behaviors.

Assignments (1): function and void function

Write a c program that stores the names of N students, find out the length of each student name, count number of students that their name length is <5 characters, between 5 and 8, and >8 characters. Use 2 functions (function 1 that reads the students names, function 2 that count number of students in each category.), finally print out the name and its length as table form, and the categories with their counts.

 Input

	Rami

	Abdulrahman

	Walleed

Print out

Rami 4

Abdulrahman 11

Walled 6

Category 1 1

Category 2 1

Category 3 1

Assignment(2): default function

Add new functions to assignment 1 that specify the category of a student and print it in front of the student name. If no category specified then set default category to 3.

1.5 Static and automatic variables
A variable for which memory is allocated at block entry and deadlock at block exist called an automatic variable. A variable for which memory remains allocated as long as the program is executed is called static variable. Global variables are static variables, while local variables are automatic variables.

The syntax of Static variables declaration is:

static type identifier

Example:

 static int x; //x is static variables of type integer

/*The following program shows static and automatic variable behavior

	 overloaded function*/

#include <iostream.h>

void test (int y);

int main ()

{ int count;

 for(count=1 ;count<=3 ;count++)

 test(count);

 return 0;}

void test (int y)

{static int x;

 x+=y*2;

 y+=1;

cout<<"inside test x="<<x<<"and y="<<y<<endl; }
	inside test x=2 and y=2

inside test x=6 and y=3

inside test x=12 and y=4

In function test, x is a static variable that initialized to 0, and y is an automatic variable, each time the function main calls the test function, memory for y is newly allocated and de-allocated when test finished, while it allocates memory for variable x at first time test is called, remain allocated until the program finish execution. For that, x is increased by 2 after each call to test, while when printing y always the same number is printed.

1.6 Namespaces

When a header file such as iostream is included in a program, the global identifiers in the header file also become the global identifier in the program. Therefore, if a global identifier in a program has the same name as one of the global identifiers in the header file, the compiler generates a syntax error (such as “identifier redefined”). The same problem could occur if a program uses third-party libraries. To solve the problem of overlapping global identifier names with the namespace mechanism. The form to use namespaces is:

namespace identifier
{ members }
Where identifier is any valid identifier and members is named constant, variable declaration, function, or set of classes, objects that are included within the namespace. For example:

namespace general

{const int n=10;
 int a, b;
 void printresult(){cout<<"end";}}

In this case, a and b are normal variables integrated within the general namespace (their scope is local to the namespace). In order to access these variables or function from outside the namespace, we have to use the scope operator ::. For example, to access the previous variables we would have to put:

general::a
general::b
general::printresult();

The functionality of namespaces is especially useful in case there is a possibility that a global object or function has the same name as another one, causing a redefinition error. For example:

	// namespaces

#include <iostream.h>

namespace first

{ int var = 5;

void print()
 {cout<<"\n*****";}
}

namespace second

{ double var = 3.1416;}

int main () {

 cout << first::var << endl;

 cout << second::var << endl;

 first::print();

 return 0; }
	5
3.1416

In this case, two global variables with the var name exist, one defined within namespace first and another one in second. No redefinition errors thanks to namespaces.

1.6.1 Using Namespace

The using directive followed by namespace serves to associate the present nesting level with a certain namespace so that the objects and functions of that namespace can be accessible directly as if they were defined in the global scope (no need for scope of resolution ::). Its utilization follows this prototype:

using namespace identifier;
Thus, for example:

	// using namespace example
#include <iostream.h>

namespace first

{ int var = 5;}

namespace second

{ double var = 3.1416;}

int main () {

 using namespace second;

 cout << var << endl;

 cout << (var*2) << endl;

 return 0; }
	3.1416
6.2832

In this case, it is possible to use var without having to precede it with any scope operator. You have to consider that the sentence using namespace has validity only in the block in which it is declared (understanding as a block the group of instructions within key brackets {}) or in all the code if it is used in the global scope. For example, if we had intention to first use the objects of a namespace and then those of another one we could do something similar to:

	// using namespace example
#include <iostream.h>

namespace first

{ int var = 5;}

namespace second

{ double var = 3.1416;}

int main () {

 { using namespace first;

 cout << var << endl; }

 { using namespace second;

 cout << var << endl; }

 return 0;}
	5
3.1416

There is possibility to define alternative names for namespaces that already exist. The form to do it is:

namespace new_name = current_name ;
namespace std

The standard has specified new names for these "header" files, basically using the same name for C++ specific files, but without the ending .h. For example, iostream.h becomes iostream. If we use the ANSI-C++ compliant include files we have to bear in mind that all the functions, classes and objects will be declared under the std namespace. For example:

	// ANSI-C++ compliant hello world
#include <iostream>

int main () {

 std::cout << "Hello world in ANSI-C++\n";

 return 0; }
	Hello world in ANSI-C++

Although it is more usual to use using namespace and save us to have to use the scope operator :: before all the references to standard objects:

	// ANSI-C++ compliant hello world (II)
#include <iostream>

using namespace std;

int main () {

 cout << "Hello world in ANSI-C++\n";

 return 0; }
	Hello world in ANSI-C++

Assignment (3): function and void function

Assignment (4): default function, prototype functions

2.Data Structures.

A data structure is a set of diverse types of data that may have different lengths grouped together under a unique declaration. Its form is the following:

struct model_name {
 type1 element1;
 type2 element2;
 .

 .

} object_name;
where model_name is a name for the model of the structure type and the optional parameter object_name is a valid identifier (or identifiers) for structure object instantiations. Within curly brackets { } they are the types and their sub-identifiers corresponding to the elements that compose the structure. If the structure definition includes the parameter model_name, that parameter becomes a valid type name equivalent to the structure. For example:
struct products {

 char name [30];

 float price;} ;

products apple;

products orange, melon;
At first define the structure model products with two fields: name and price, each of a different type. We have then used the name of the structure type (products) to declare three objects of that type: apple, orange and melon. Once declared, products has become a new valid type name like the fundamental ones int, char or short and we are able to declare objects (variables) of that type.

The optional field object_name that can go at the end of the structure declaration serves to directly declare objects of the structure type. For example, also it is possible to declare the structure objects apple, orange and melon this way:

struct products {

 char name [30];

 float price;

} apple, orange, melon;
Moreover, in cases like the last one in which we took advantage of the declaration of the structure model to declare objects of it, the parameter model_name (in this case products) becomes optional. Although if model_name is not included it will not be possible to declare more objects of this same model later.

It is important to clearly differentiate between what is a structure model, and what is a structure object. Using the terms we used with variables, the model is the type, and the object is the variable. We can instantiate many objects (variables) from a single model (type).

Once we have declared our three objects of a determined structure model (apple, orange and melon) we can operate with the fields that form them. To do that we have to use a point (.) inserted between the object name and the field name. For example, we could operate with any of these elements as if they were standard variables of their respective types:

apple.name
apple.price
orange.name
orange.price
melon.name
melon.price
each one being of its corresponding data type: apple.name, orange.name and melon.name are of type char[30], and apple.price, orange.price and melon.price are of type float.

We are going to leave apples, oranges and melons and go with an example about movies:

	// example about structures
#include <iostream.h>

#include <string.h>

#include <stdlib.h>

struct movies_t {

 char title [50];

 int year;

} mine, yours;

void printmovie (movies_t movie);

int main ()

{ char buffer [50];

 strcpy (mine.title, "2001 A Space Odyssey");

 mine.year = 1968;

 cout << "Enter title: ";

 cin.getline (yours.title,50);

 cout << "Enter year: ";

 cin.getline (buffer,50);

 yours.year = atoi (buffer);

 cout << "My favourite movie is:\n ";

 printmovie (mine);

 cout << "And yours:\n ";

 printmovie (yours);

 return 0;}

void printmovie (movies_t movie)

{ cout << movie.title;

 cout << " (" << movie.year << ")\n";}
	Enter title: Alien
Enter year: 1979

My favourite movie is:
 2001 A Space Odyssey (1968)
And yours:
 Alien (1979)

The example shows how we can use the elements of a structure and the structure itself as normal variables. For example, yours.year is a valid variable of type int, and mine.title is a valid array of 50 chars. Notice that mine and yours are also treated as valid variables of type movies_t when being passed to the function printmovie(). Therefore, one of the most important advantages of structures is that we can refer either to their elements individually or to the entire structure as a block.

Structures are a feature used very often to build data bases, especially if we consider the possibility of building arrays of them.

	// array of structures
#include <iostream.h>

#include <stdlib.h>

#define N_MOVIES 5

struct movies_t {

 char title [50];

 int year;

} films [N_MOVIES];

void printmovie (movies_t movie);

int main ()

{ char buffer [50];

 int n;

 for (n=0; n<N_MOVIES; n++)

 { cout << "Enter title: ";

 cin.getline (films[n].title,50);

 cout << "Enter year: ";

 cin.getline (buffer,50);

 films[n].year = atoi (buffer); }

 cout << "\nYou have entered these movies:\n";

 for (n=0; n<N_MOVIES; n++)

 printmovie (films[n]);

 return 0;}

void printmovie (movies_t movie)

{ cout << movie.title;

 cout << " (" << movie.year << ")\n";}

	Enter title: Alien
Enter year: 1979
Enter title: Blade Runner
Enter year: 1982
Enter title: Matrix
Enter year: 1999
Enter title: Rear Window
Enter year: 1954
Enter title: Taxi Driver
Enter year: 1975

You have entered these movies:
Alien (1979)
Blade Runner (1982)
Matrix (1999)
Rear Window (1954)
Taxi Driver (1975)

2.1 Pointers to Structures

Like any other type, structures can be pointed by pointers. The rules are the same as for any fundamental data type: The pointer must be declared as a pointer to the structure:

struct movies_t {

 char title [50];

 int year;};

movies_t amovie;

movies_t * pmovie;

Here amovie is an object of struct type movies_t and pmovie is a pointer to point to objects of struct type movies_t. So, the following, as with fundamental types, would also be valid:

pmovie = &amovie;
Another example, that will serve to introduce a new operator:

	// pointers to structures
#include <iostream.h>

#include <stdlib.h>

struct movies_t {

 char title [50];

 int year;};

int main ()

{ char buffer[50];

 movies_t amovie;

 movies_t * pmovie;

 pmovie = & amovie;

 cout << "Enter title: ";

 cin.getline (pmovie->title,50);

 cout << "Enter year: ";

 cin.getline (buffer,50);

 pmovie->year = atoi (buffer);

 cout << "\nYou have entered:\n";

 cout << pmovie->title;

 cout << " (" << pmovie->year << ")\n";

 return 0;}
	Enter title: Matrix
Enter year: 1999

You have entered:
Matrix (1999)

The previous code includes an important introduction: operator ->. This is a reference operator that is used exclusively with pointers to structures and pointers to classes. It allows us not to have to use parenthesis on each reference to a structure member. In the example we used:

pmovie->title
that could be translated to:

(*pmovie).title
both expressions pmovie->title and (*pmovie).title are valid and mean that we are evaluating the element title of the structure pointed by pmovie. You must distinguish it clearly from:

*pmovie.title that is equivalent to *(pmovie.title)
and that would serve to evaluate the value pointed by element title of structure movies, that in this case (where title is not a pointer) it would not make much sense. The following panel summarizes possible combinations of pointers and structures:
	Expression
	Description
	Equivalent

	pmovie.title
	Element title of structure pmovie
	

	pmovie->title
	Element title of structure pointed by pmovie
	(*pmovie).title

	*pmovie.title
	Value pointed by element title of structure pmovie
	*(pmovie.title)

2.2 Nesting structures

Structures can also be nested so that a valid element of a structure can also be another structure.

struct movies_t {

 char title [50];

 int year; }

struct friends_t {

 char name [50];

 char email [50];

 movies_t favourite_movie;

 } charlie, maria;

friends_t * pfriends = &charlie;

Therefore, after the previous declaration we could use the following expressions:

charlie.name
maria.favourite_movie.title
charlie.favourite_movie.year
pfriends->favourite_movie.year
(where, by the way, the last two expressions are equivalent).

typedef type newtypename

type name (argument1, argument2, ...) statement

